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Abstract termination is guaranteed because the maximum link bound
ensures that some domain will become empty after a bounded
number of iterations. Thus, the iteration(Y N?3), where

N is the number of nodes in the network. However, the ap-
parent low-order polynomial is misleading, because for many
applications the link bound (and hence the number of itera-
tions) may be very large in practical terms. Looked at an-
other way, if we allow the link sizes to grow, and measure
the problem size in terms of the decimal representations of
the link sizes, the complexity i©(10° N?), where D is a
bound on the lengths of the decimal representations of the
link sizes. In the parlance of complexity theory, the algo-
rithm is pseudo-polynomial like arc-consistency, rather than
being a true polynomial algorithm. An example of the latter
category is the well-known Bellman-Ford algorith@ormen

et al, 1994 for determining consistency of an STN.

Note that the constraint propagation process underlying
Bellman-Ford can be viewed as enforcing arc-consistency.
1 Introduction What makes the algorithm a true polynomial algorithm is
éhe Bellman-Forccutoff which restricts the number of iter-
ations based on the number of nodes in the network. In this
paper, we derive an analogous cutoff method for Dynamic
F;]gntrollability checking. We also present several other im-
provements to the approach p¥lorris et al, 2001. The
dreatment there involves numerous distinct concepts, includ-
. : . ihg diverse reduction and regression operations, that are sub-
Many applications, however, involve temporal uncertamtygtantially simplified in the present paper. The algorithm also

where the duration of certain processes is not under th . ' .
quired repeated checks of a special consistency property,

control of the agent using the plan. In these cases, the valu¢§duire ; .
for the variables that are under the agent's control may neeﬁgm‘:h involved recomputation of the AllPairs network after

to be chosen so that they do not constrain uncontrollabl&VETY iteration. Ir) this paper, that is replaced by a standard
events whose outcomes are still in the future incremental consistency check. We also show how to refor-

Although we are not aware of deployed systems that fu");Tmlate the iterations so they visit a restricted subset of trian-

confront these issues, progress has been made in recent yegﬁs’ which reduces the complexity.

on the theoretical front. IfVidal and Fargier, 1999 sev-

eral notions of controllability are defined, includiBynamic 2 Background

Controllability. Roughly speaking, a network is dynamically We restate the basic definitions, as describdiorris et al.,

controllable (DC) if there is a strategy for satisfying the re-2001], and summarize the algorithm presented there.

qguirements that depends only on knowing the outcomes of A Simple Temporal Network (STN) is a graph in which the

past uncontrollable events. edges are labelled with upper and lower numerical bounds.
In [Morris et al,, 2001 an algorithm is presented that deter- The nodes in the graph represent temporal eventsme-

mines DC and runs in polynomial time under the assumptiorpoints while the edges correspond to constraints on the dura-

that the maximum size of links in the STN is bounded. Thetions between the events. Formally, an STN may be described

method involves repeated tightenings based on a consideras a 4-tuple< N, E,l,u > whereN is a set of nodeg is a

tion of “triangles” (i.e., node triples) in the network. Note that set of edges, and £ — RU{—oc} andu : E — RU{+oc0}

An important issue for temporal planners is the
ability to handle temporal uncertainty. We re-
visit the question of how to determine whether a
given set of temporal requirements are feasible in
the light of uncertain durations of some processes.
In particular, we consider how best to determine
whether a network is Dynamically Controllable,
i.e., whether a dynamic strategy exists for executing
the network that is guaranteed to satisfy the require-
ments. Previous work has shown the existence of a
pseudo-polynomial algorithm for testing Dynamic
Controllability. Here, we greatly simplify the pre-
vious framework, and present a true polynomial al-
gorithm with a cutoff based only on the number of
nodes.

For some time, Constraint-Based Planning system
(e.g. [Muscettolaet al, 1999) have been using Simple

Temporal Networks (STNs) to test the consistency of partia
plans encountered during the search process. These syste
produce flexible plans where every solution to the final
Simple Temporal Network provides an acceptable schedul



are functions mapping the edges into extended Real Nunmexecutable timepoint irrespective of the outcomes of the con-
bers that are the lower and upper bounds of the interval ofingent links.

possible durations. Each STN is associated witlistance An STNU isDynamically Controllabléf there is a viable
graph[Dechteret al,, 1991 derived from the upper and lower execution strategy§ such that

bound constraints. An STN is consistent if and only if the dis-

tance graph does not contain a negative cycle, and this can be [S(pD)]<e = [S(p2)]<e = [S(P1)]a = [S(p2)]2

determined by a single-source shortest path propagation sU¢ly cach executable timepointand projections)1 and p2.

as in the Bellman-Ford algorithii€ormenet al, 1990. To 15" 4 Dynamic execution strategy assigns a time to each
avoid confusion with edges in the distance graph, we will ré-gyecytable timepoint that may depend on the outcomes of
fer to gdges in the STN diks. , , contingent links in the past, but not on those in the future
_ A Simple Temporal Network With Uncertainty (STNU) (qr present). This corresponds to requiring that only informa-
is similar to an STN except the links are divided into WO o gyajlable from observation may be used in determining

classesgontingent linksand requirement links Contingent o schedule. We will useynamic strategyn the following
links may be thought of as representing causal processes ﬂl}r a (viable) Dynamic execution strategy.

uncertain duration; their finish timepoints, calledntingent Itis easy to see from the definitions that Strong Controlla-

timepoints are controlled by Nature, subject to the limits im- ;v implies Dynamic Controllability, which in turn implies
posed by the bounds on the contingent links. All other time-, y 'mp y 4 P

; X . eak Controllability. In this paper, we are primarily con-
points, calledexecutable timepointsare controlled by the o nad with Dynamic Controllability
agent, whose goal is to satisfy the bounds on the requireme )

ks, Wi he durafi p , link ind Nyt was shown in[Morris et al, 2001 that determining
Inks. We assume the durations of contingent links vary indep, s mic Controllability is tractable, and an algorithm was
pendently, so a control procedure must consider every co

bination of such durations n}5resented that ran in polynomial time under the assumption
; : that the sizes of links were bounded above and below. (As
Thus, an STNU is a 5-tuplec N, E,l,u,C >, where (

) : i discussed in the introduction, this may be called pseudo-
N,E,l,uareasinaSTN, and is a subset of the edges: the v nomial.) We will refer to this in the rest of paper as the
contingent links, the others being called requirement links

, i . ; Classic D ic Controllability algorith lassic algo-
Each contingent link is required to satisfy< I(e) < u(e) < assic Dynamic Controflability algorithimor classic algo

. . - ; S . rithm for short.
oo. Multiple contingent links with the same finishing points The classic algorithm involved repeated checking of a spe-
are not allowed.

. . : ial consistency property called pseudo-controllability. An
Choosing one of the allowed durations for each contingen y propery b y

. - . TNU is pseudo-controllabléf it is consistent in the STN
link may be thought of as reducing the STNU to an ordinary, : ;
STN. Thus, an STNU determines a family of STNs Corre_sense and none of the contingent links are squeezed, where

; . N contingent link issqueezed the other constraints imply a
sponding to the different allowed durations; these are calle trictly tighter lower bound or upper bound for the link. The

projectionsof the STNU. o ;
; . : pseudo-controllability property was tested by computing the
Given a fixed STNU< N, B, 1, u, C >, aschedulel’isa  apairs graph. The algorithm also involved repeated tighten-
mapping TN ings of the network that, while preserving the status of DC or
N —

non-DC, made explicit the implicit constraints resulting from
whereT'(x), written T, here, is called théme of time-point  the contingent links. Thus, we can summarize the classic al-
x. A schedule isconsistentf it satisfies all the link con-  gorithm as follows.
straints. From a schedule, we can determine the duratio
of all contingent links that finish prior to a timepoint (This
may be viewed as a partial mapping frarhto .) We call
this theprehistoryof x with respect tdl’, denoted byl .

An execution strategy is a mapping

"Boolean procedure determineDC()
loop
if not pseudo-controllable
return false;
if no more tightenings exist
S:P—->T return true;
else

whereP is the set of projections arilis the set of schedules. . . .
implement some tightening;

An execution strategy is viableif S(p) is consistent (w.r.t. -
p) for each projectiom. end loop;
We are now ready to define the various types of controlla—end procedure
bility, essentially following[Vidal, 200. The guarantee of termination relied on the fact that if quies-
An STNU isWeakly Controllabléf there is a viable execu- cence is not reached, then continued tightenings will eventu-
tion strategy. This is equivalent to saying that every projectiorally empty some domain.

is consistent. Some of the tightenings involved a novel temporal con-
An STNU is Strongly Controllablef there is a viable exe-  straint called await. Given a contingent link AB and an-
cution strategys such that other link AC, the <B,t> annotation on AC indicates that
1S(p1)]e = [S(p2)] e?(ecution of th_e timepoint C i_s not allowed to proceed until
PL)le Pe)le either any positive amount of time has elapsed after B has oc-

for each executable timepointand projectiong1 and p2. curred or until at least units of time have elapsed since A
Thus, a Strong execution strategy assigns a fixed time to eaatcurred. Thus, a wait is a ternary constraint involving A, B,



and C. It may be viewed as a lower boundt@i AC thatis  This is actually a multigraph (which allows multiple edges
interruptible by B. Note that the annotation resembles a bibetween two nodes), but we refer to it as a graph in this paper
nary constraint on AC. The waits were not used directly tofor simplicity. In the labelled distance graph, each require-

compute pseudo-controllability, but could result in additional
binary constraints that did play a role in that computation.

In order to describe the tightenings, we introduce the notad «—

tion A 2 B to indicate a contingent link with boundis, y]
between A and B. It will also be convenient to write this back-

wards a3 @ A. We use the similar notation o [x—’yl B

andB il A for ordinary links.
We can summarize the tightenings, calteductions used

ment link A Y Bis replaced by two edges —~ B and

X

B, just as in an STN. For a contingent Iimk[’(:’yi B,
we have the same two edgds -~ B andA <~ B, but
we also have two additional edges of the fahm>> B and

A PV B. These are calletibelled edgebecause of the ad-
ditional “b:” and “B:” annotations indicating the contingent
timepoint B with which they are associated. Note the rever-

in the classic algorithm as follows. They show new links thatsal in the roles of x and y in the labelled edges. We refer to
are added when the given pattern is satisfied unless tightey =Y g gnga 2% B asupper-cas@ndlower-caseedges,

links already exist.
(Precedes Reduction)df> 0, y' =y —v, 2’ =z — u,
ARA Y ¢ agds A VX @

(Unordered Reduction) i < 0,v >0, v/ =y — v,
X, B,y
AN o adds A S2Y7

[u,v]

— —

(Simple Regression) i =y — v,
/
ASBY ol qggs A <BY

—=

[u,v]
—

D

(Contingent Regression) #f > 0,B # C,

B u,v B -
AS2YT oy agds A DY p

(“Unconditional” Reduction) Ifu < z,
Bl A <BU> ¢ agds A0

—

(General Reduction) . > z,
g A BU> ¢ agds A

—

Boo) (-

The “Unconditional” Reduction is so-called because in this

situation the full impact of the ternary.B, »> constraint is
capturned by the binary:, co] bound without having to split
it into cases. By contrast, in the General Reduction the in-
ferred binary constraint is weaker than the ternary constraint.

respectively. Note that the upper-case label B:-y is the value
the edge would have in a projection where the contingent link
takes on its maximum value, whereas the lower-case label
corresponds to the contingent link minimum value.

<B,t>

—

We also provide a representation foAa C con-
straint in the labelled distance graph. This corresponds to a

single edgeA ¥ ¢, Note the analogy to a lower bound.
Also note that this is consistent with the lower bound that
would occur in a projection where the contingent link has its
maximum value.

We now introduce new simplified tightenings in terms of
the labelled distance graph. The first four categories of tight-
ening from the classic algorithm are replaced by what is es-
sentially a single reduction with different flavors. These are:

(Upper-Case Reduction) if > 0,

AZXCc D adds AP p

(Lower-Case Reduction) lf < 0,
AL CED adds AZED

(Cross-Case Reduction)df< 0, C' # B,
BX & D adds AT p

A & —

(No-Case Reduction)
A CED adds AZYD

We also note that in the classic algorithm, the tightenings as one might expect, if a reduction adds an edge where
are applied to edges in the AllPairs graph (computed as part gfnother edge with the same start, end and label already exists,

the determination of pseudo-controllability). However, they
are valid for any edges.

3 Simplifications

then the tighter of the two edges is retained and the other
discarded.

Itis straightforward to see that the new reductions are sanc-
tioned by the old ones. (We will defer for the moment the con-

As mentioned earlier, an ordinary STN has an alternative reps,ideration of the reverse direction.) First note that, as applied

resentation as distance graphin which a link A o] Bis

replaced by two edges - B andA <= B, where they
and—z annotations are calledeights Edges with a weight

to B:x in a wait, the Upper-Case and Cross-Case Reductions
are simple transliterations to the new notation of the Simple

and Contingent Regressions, respectively. As applied to B:x
in the representation of a contingent link, the Upper-Case Re-

of oo are omitted. The distance graph may be viewed as aduction follows from the Unordered Reduction usirgp,Y]
STN in which there are only upper bounds. This allows shortas the bound. Note that the Cross-Case Reduction will never

est path methods to be used to compute consistédeghter
etal, 1991.

be applied to a B:x from a contingent link, since contingent
links do not share finishing points. Finally, note that No-Case

In this paper we introduce an analogous alternative repReduction is just composition of ordinary edges. (The reason

resentation for an STNU called thabelled distance graph

for including this will become clear below.)



Observe that upper-case labels can “move” in the sense that We note that the Unordered Reduction is directly emulated
they can apply to new edges as a result of reductions (but they the Upper-Case Reduction.
targets of the edges do not change), whereas the lower-caseNext we show that the checks for contingent-link squeez-
edges are fixed, i.e., the reductions do not produce new onemg that occur in pseudo-controllability testing are unneces-
In place of the Unconditional and General Reductions, wesary. Suppose first an upper bound on a contingent link is
will have a single reduction. squeezed, i.e., we have

(Labpel Regjoval Reduction) f > —z, Ay 2 A
B ASZC oadds A2 C

This is simply a transliteration of the Unconditional Re- . (—y+z . .
1S 15 SIMPY > ! . cable, givingA Bi(zyte) A, after which AllMax consistency

duction to the new notation. ina d . i N id h h
Our next simplification involves the special consistency!©Sting detects a negative seff-loop. Next consider where the
lower bound is squeezed, i.e.,

test that is applied before each iteration in the classic algo
rithm. Instead of testing for the complex property of pseudo- AR 2 A
controllability, we will check for ordinary consistency of the
AllMax projection, where we define the AllMax projection to wherez < —z. Applying the Lower-Case Reduction gives
be the STN where all the contingent links take on their max-, x+z : : . .
imu_m v_alues. Observe_that the distance graph _of the AllM Aémojg_’ after which consistency testing detects a negative
Ermect&orp can blclalobtamed fro(rjn the Iatéellzed distance Eralp The other purpose fulfilled by pseudo-controllability test-
y (1) deleting all lower-case edges, and (2) removing the I8, a5 to compute the tight links of the All-Pairs graph. This

bels from all upper-case edges. task is now taken over by the No-Case Reduction. (Thus,

_ Note thatitis correct to conclude that a network is not DCyne computation of tight links is interleaved with other reduc-
if the AllMax projection is inconsistent, since this excludestions_)

Weak Controllability, which in turn excludes Dynamic Con- |, only remains to show that the General Reduction is un-

trogability. e the classic alorithm for D _necessary. An examination of the correctness profi¥/ior-
uppose we now take the classic algorithm for DynamiGs ot 51 2007 shows that this reduction is only needed to

Controllability, and modify it by replacing the old reduc- e ent deadiock, where a cycle exists in which each link
tions/regressions with the new, and replacing the pSEUd‘Eas either a positive lower-bound or a positive wait. In the

controllability test with the AllMax consistency test. We will new framework, this task is fulfilled by the AllMax consis-

call this thebaseline algorithmt follows from the previous oncy testing, which would detect such a loop as an ordinary
discussion that the algorithm will give correct 'no” answers. e qaiive cycle. Thus, the correctness proof for the classic al-
We now consider the opposite direction, and show that it willy ity can be adapted to show correctness of the baseline
also still give correct "yes” answers. algorithm, without the need for the General Reduction.
Theorem 1 If the baseline algorithm returns true then the O

network is dynamically controllable.

Proof: 4  Cutoff Algorithm

We will show the old reductio_ns are either emulated by theNow that we have a simplified framework, we can proceed to
new ones, or are unnecessary in the new framework. We algmprove on the baseline algorithm. Our first task is to obtain
prove that it is unnecessary to directly test whether a contina cutoff bound analogous to that of Bellman-Ford, rather than

gent link is squeezed. depending for termination on the domain size, which could
First, as noted previously, the two regressions are translitpe large.

erations of the Upper-Case and Cross-Case Reductions as ap\We will focus on the “Case” (including No-Case) reduc-
plied to waits, and the Unconditional Reduction is a translit-tions, because those are ones that can be applied repetitously.

wherez < y. Note that the Upper-Case Reduction is appli-

eration of Label Removal. Thus, they are emulated. We regard such a reduction as a repetition if the particular
Next consider the Precedes Reduction node triple and configuration of labels (if any) has occurred
(Precedes Reduction)df> 0, 4/ =y — v, 2’ = = — u, ?efore. For example, if the Lower-Case reduction is applied

X u,v /.X/ 0

AR g o adds A ¢ AL p b g

and suppose that its pattern is satisfied. and later (after BA has tightened to -2), it is applied to
After applying both the Upper-Case and Lower-Case re-

ductions to the labelled distance graph, we reach the follow- A2l

ing situation: ] -
x’ Bi—y’ we consider that a repetition.
A—C— A Note that if a repetition occurs, then at least one of the
Then eithery/ > 2/, in which case both algorithms detect in- participating edges must have a tighter weight (or labelled
consistency, oy’ < z’ < z, inwhich case the Label Removal weight) than its previous value. This leads us to define the
Reduction applies. The result then emulates the Precedes Rgarentof the result edge from a repetition to be the partici-
duction. pating edge that tightened. If both participating edges have



been tightened, one is chosen arbitrarily. Also, in a reductioromplexityO(K N). Since theD(K N?) andO(K N) terms
that is occurring for the first time, the parent can be chosemre dominated byD(N?), the overall complexity of each
arbitrarily. iteration, excluding AllMax consistency testing, (3 N?).
Next we observe that during the operation of the baselind he total complexity is the®(N®), since there are at most
algorithm, the labelled distance graph (actually a multigraphN? + NK + K iterations. The AllMax consistency testing
as noted earlier) has at mad® + NK + K edges, where can be done using an incremental Bellman-Ford algorithm
N is the number of nodes arfd is the number of contingent as in[Cervoniet al, 1994. The amortized complexity is
timepoints. HereV?2 is a bound on the number of ordinary O(E’N), whereE’ is the final number of edges. Note that
edges. The number of upper-case edges is limited to NK beE” is bounded by{N? + KN + K). Thus, this is dominated
cause the reductions preserve the property that an upper-casgtheO(N®) complexity derived above.
edge always points to the source of its contingent link. Thus,
for each contingent link we can have at maétupper-case 5 Refined Algorithm

edges. Also recall that the lower-case edges are fixed so the\f. can do better if we can either reduce the scope of the in-
are exactly’ of them. _ _ ner loop, or reduce the size of the set from which the parents
The 2bound means that if a parent chain becomes longefre taken (which would reduce the cutoff bound). As it turns
than V= + NK + K, then it must contain a repeated edge. 5t we can do both by exploiting the following observation.
Note the “Case” reductions have a linearity property where qqyice that the AllMax consistency testing takes full account
tightening of the parent is transmitted to the child without any upper-case edge values (with the labels removed), but ig-
attenuation. Moreover, a reduction that is applicable will still ,5ras jower-case edges. Thus, if we can “eliminate the need”

be applicable if a parent s tightened further. This implies thakq, the |ower-case edges, the consistency testing takes care of
any repetition in the parent chain will lead to continued repepe remaining interactions.

titions until some domain is exhausted. Thus, the network is To make this more precise, define tieeluced distancef

not DC in this situation. , o any path in the labelled distance graph to be that obtained by
Next we note that the edges added in tHb iteration of  gymming the numerical values on the edges without regard to
the basellne algorithm must have parent chains that contain éhy labels. Notice that new paths created by reductions pre-
leasti parents. We conclude thatwe can W&+ NK+K as  serve the reduced distance. The reductions (in particular the
a cutoff analogous to Bellman-Ford, and terminate with falsqgwer-case and cross-case ones) may be viewed as converting
if that number of iterations is exceeded. _ reduced distances to distances in the AllMax projection by
This leads to the following algorithm for Dynamic Con- providing an alternative path that is free of lower-case edges.
trollability, which we term thebasic-cutoff algorithm This suggests that we might be able to restrict the reductions
so that they only add edges that are needed to support the

Boolean procedure determineDC() \ |
creation of the alternative paths.

loop for iter from 1 to (N2 + NK + K)

if AllMax projection inconsistent
return false;
Perform any No-Case tightenings;
for each Upper-Case edge e do
for each node B do
Perform Upper-Case tightenings
that involve e and B;
Perform Cross-Case tightenings
that involve e and B;
for each Lower-Case edge e do
for each node B do
Perform Lower-Case tightenings
that involve e and B;
if no tightenings were found above
return true;
for each Upper-Case edge e do

We will show this can be achieved by restricting the Upper-
Case and No-Case Reductions so that they only apply when
D is a contingent timepoint, i.e., the target of a contingent
link. With these restrictions, applications of the two reduc-
tions behave essentially as a propagation forward from each
contingent timepoint. This reduces the scope of all the re-
ductions to only adding edges that emanate from the start or
end of a contingent link. (The Lower-Case and Cross-Case
Reductions already satisfy this restriction.) We have the fol-
lowing theorem.

Theorem 2 Any effect on AllMax distances of the unre-
stricted reductions can also be achieved by the restricted re-
ductions.

Proof:
Using the unrestricted reductions, consider any application
« of a Cross-Case or Lower-Case Reduction (the only ones

Perform applicable Label Removals;

that can tighten AllMax distances) during the course of the
end loop;

return false: algorithm. Suppose the (eduction_is appliedite— C <&
end procedhre D where CA has a negative (possibly upper-labelled) value.

If we “unwind” all the reductions preceding back to
We can analyze the complexity of each iteration as followsthe start, we can identify a path in the original labelled dis-
For the No-Case tightenings we need only look at trianglegance graph that is the preimageppecursorof the CA edge.
of ordinary edges. This phase has complexityN3). The  (Since the lower-case edges are fixed, the precursor of the DC
Upper-Case phase has complexityk N2) since there are at edge is itself.)
most K N upper-case edges. The Lower-Case phase clearly We will focus on the propagation forward from C to A sup-
has complexityO(K N), and the Label Removals also have ported by the restricted reductions. We need to show that this



will allow the DC lower-case edge to be bypassed on some for each Upper-Case edge e do

subpath of the DA path. Notice that if the propagation is not Perform applicable Label Removals;
“blocked” and reaches A then theapplication can again be end loop;
applied to achieve this. return false;

Consider first the special case where there are no loweend procedure

case edges between C and A. Then repetitions of the No-Casge call the modified algorithm theefined-cutoffalgorithm
Reduction will allow propagation forward from C until we for Dynamic Controllability.

reach some upper-case edge B'A. At that point, we have the Note that this reduces the complexity of the no-case phase

following situation: to O(E'K), whereE’ = E + NK is a bound on the final
B v o number of edges in the network. The upper-case phase now
Ale—B «—C—D has complexityO(N K?). The dominant term i©)(E'K),

which also dominates the other phases in the iteration. More-
over, all of the parents in the parent chain analysis are now
chosen from a set of sizZé( N K). Thus, the total complexity

Supposeu is the lower bound of the AB’ contingent link.
Note that ifx + y > —u, then we can apply an upper-case

reduction followed by label removal to eliminate the B’ label can be estimated a8(E'NK?2), which is equivalent tas>

from the path and continue. i + y < —u and B#C, we 0 cyhe cost of a Bellman-Ford in an STN wih edges.
can apply an upper-case followed by a cross-case reduction

to immediately bypass DC. Otherwise, since the unrestricteg ;
propagations were able to eliminate B’, there must be som Closing Remarks o
node E between C and B’ such that EB’ > —uand hence Other recent work has focused on combining DC rea-
CE must be negative. In this case, we can apply a lower-casioning with preferencefRossiet al, 2004 or probabili-
reduction immediately to bypass DC. Thus, in all cases wéies[Tsamardinogt al, 2003. In this paper, we have revis-
can convert the reduced distance on the DA path to an AllMated the foundation to place it on a simpler and more efficient
distance. footing.

Next consider the general case where there may be lower-
case edges between C and B. These must have been bypasi@ferences
in the unrestricted case by applications of the lower-case diCervoniet al, 1994 R. Cervoni, A. Cesta, and A. Oddi.
cross-case reductions. We will call the node that participates Managing dynamic temporal constraint networksProc.
as the “A’ node in those applications tla@nihilator of the AIPS-94 pages 13-20, 1994.
lower-case edge. It is easy to see that in the precursor path ormenet al, 1999 T.H. Cormen, C.E. Leiserson, and

the pairs consisting of a lower-case edge and its annihilator g | Rivest.Introduction to AlgorithmsMIT press, Cam-
must be “bracketed” in the sense that two such pairs must ei- br.id.ge MA. 1990 '

ther be nested or disjoint. Then the innermost pair of eac .

nested group will consist of a lower-case edge and its annitP€chteretal, 1997 R. Dechter, |. Meiri, and J. Pearl. Tem-

hilator without any intermediate lower-case edges. Thus, we Poral constraint networksAvrtificial Intelligence 49:61—-

can apply the method for the special case above repeatedly in 95, May 1991.

an “inside-out” fashion to eliminate all the lower-case edgedMorris et al, 2001 P. Morris, N. Muscettola, and T. Vidal.

from the path. Dynamic control of plans with temporal uncertainty. In
a Proc. of IJCAI-01 2001.

The restricted application of tightenings allows us to mod-[\Muscettolaet al, 1999 N. Muscettola, P.P. Nayak, B. Pell,
ify the no-case and upper-case phases of the basic-cutoff al- 3nd B.C. Williams. Remote agent: to boldly go where no

gorithm as follows. Al system has gone befordrtificial Intelligence 103(1-
Boolean procedure determineDC() 2):5-48, August 1998.
loop for iter from 1 to (N2 + NK + K) [Rossiet al., 2004 F. Rossi, K.B. Venable, and N. Yorke-
if AllMax projection inconsistent Smith. Controllability of soft temporal constraint prob-
return false; lems. InProc. CP 2004pages 588-603, 2004.

I Perform restricted No-Case tightenings;
for each Upper-Case edge e do
! for each contingent node B do
Perform Upper-Case tightenings
that involve e and B;

[Tsamardinogt al, 2003 |I. Tsamardinos, M. E. Pollack,
and S. Ramakrishnan. Assessing the probability of legal
execution of plans with temporal uncertainty. IDAPS-

03 Workshop on Planning under Uncertain®p03.

Perform Cross-Case tightenings [Vidal and Fargier, 1999T. Vidal and H. Fargier. Handling
that involve e and B: contingency in temporal constraint networks: from con-
for each Lower-Case edge e do sistency to controllabilities.Journal of Experimental &
for each node B do Theoretical Artificial Intelligencgl1:23—-45, 1999.
Perform Lower-Case tightenings [Vidal, 2004 T. Vidal. Controllability characterization and
that involve e and B; checking in contingent temporal constraint networks. In
if no tightenings were found above Proc. of Seventh Int. Conf. on Principles of Knowledge

return true; Representation and Reasoning (KR’2Q@1)00.



